Harmonic-balance multi-physical FE and circuit simulator for PE converters

Host

ULB

Suspendisse tristique vehicula ante tortor, ut auctor diam ornare ut. Pellentesque et ex et dolor tempor suscipit. Phasellus vel orci vel orci tincidunt interdum. Nunc quis viverra metus. In cursus tincidunt. Nam consequat nibh justo, non sollicitudin sem placerat vitae.

Client & task

Seven Games Company

Suspendisse tristique vehicula ante tortor, ut auctor diam ornare ut. Pellentesque et ex et dolor tempor suscipit. Phasellus vel orci vel orci tincidunt interdum. Nunc quis viverra metus. In cursus tincidunt. Nam consequat nibh justo, non sollicitudin sem placerat vitae.

Objectives

The increasing adoption of wide-bandgap (WBG) semiconductors in power converters has led to operation at higher switching frequencies with steep voltage and current transitions. These conditions introduce complex multi-harmonic behaviour, rapid transient dynamics, and strong electromagnetic-thermal couplings that are challenging to capture with traditional time-stepping finite-element (FE) solvers. Steady-state analysis, in particular, becomes computationally expensive when considering high-frequency PWM waveforms or non-sinusoidal excitation.

Harmonic-balance (HB) simulation, combining sinusoidal and PWM time-domain basis functions, provides a powerful alternative for efficiently modelling steady-state behaviour, while enabling accurate assessment of losses in magnetic cores, windings, and circuit parasitics. Integrating multi-scale material models and homogenisation techniques further enhances predictive accuracy, capturing core, skin, and proximity effects. This project develops a multi-physical HB FE and circuit simulator that bridges the gap between component-level magnetic characterisation and system-level converter performance, validated on real industrial power supplies.

Objectives 1

Develop a harmonic-balance (multi-harmonic) FE and circuit simulator for PE converters, integrating (co)sinusoidal and PWM time-domain basis functions (multirate) for steady-state analysis.

Objectives 2

Incorporate dedicated material laws and multi-scale/homogenisation techniques to account for core, skin, and proximity-effect losses in magnetics.

Objectives 3

Perform ad hoc numerical characterisations of materials and windings, considering all relevant time-domain basis functions (slow and fast dynamics).

Objectives 4

Extend the analysis to transient states with optimised magneto-thermal coupling.

Objectives 5

Apply the developed models and techniques in practical industrial test cases, including real-life power supply systems.

Phasellus velit venenatis finibus
Phasellus velit venenatis finibus velit
Morbi nec accumsan sem dolor
Pellentesque et quam vel
Pellentesque et quam nisi sagittis vel ante
Pellentesque sagittis vel ante

Expected Results

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus et massa nec arcu efficitur ultrices. Proin laoreet neque eu ligula pretium, vel congue urna faucibus. Integer ut felis dui. Phasellus tincidunt lacus ac ex laoreet, ac ultricies quam condimentum. Vestibulum ante ipsum primis in est.

19.7%
Harmonic-balance FE and circuit simulator.
67%
Associated core material and winding numerical characterisation.
260%
Validation via several test cases.

Sed fringilla gravida lorem, id rhoncus justo egestas sed. Nulla sagittis vel ante sit amet neque non tellus interdum tincidunt eget eu odio. Awesome!

- Brian Green, CEO of Seven Games

Discover More Projects